Wednesday, December 14, 2011

yy' - 2e^x = 0 , y(0) = 3 Find the particular solution that satisfies the initial condition

For the given problem: yy'-2e^x=0 , we can evaluate this by applying variable separable differential equation in which we express it in a form of f(y) dy = f(x)dx .
 Then, yy'-2e^x=0 can be rearrange into yy'= 2e^x
Express y'  as (dy)/(dx):
 y(dy)/(dx)= 2e^x
Apply direct integration in the form of  int f(y) dy = int f(x)dx :
y(dy)/(dx)=2e^x
ydy= 2e^xdx
int ydy= int 2e^x dx
For the left side, we apply Power Rule integration: int u^n du= u^(n+1)/(n+1) .
int y dy= y^(1+1)/(1+1)
             = y^2/2
 For the right side, we apply basic integration property: int c*f(x)dx= c int f(x) dx and basic integration formula for exponential function: int e^u du = e^u+C on the right side.
int 2e^x dx= 2int e^x dx
                  = 2e^x+C
Combining the results for the general solution of differential equation:
y^2/2=2e^x+C
2* [y^2/2] = 2*[2e^x]+2*C     
Let 2*C= C . Just a constant.
y^2= 4e^x+C
 
 To find the particular solution we consider the initial condition y(0)=3 which implies x=0 and y =3 .
Plug them in to  y^2= 4e^x+C , we get:
3^2= 4e^0+C
9= 4*1+C
9=4+C
Then C=9-4=5 .
Plug-in C=5 iny^2= 4e^x+C , we get the particular solution:
y^2= 4e^x+5
 y = +-sqrt(4e^x+5).

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...