Evaluate ∫x2cosmxdx by using Integration by parts.
If we let u=x2 and dv=cosmxdx, then
du=2xdx and v=∫cosmxdx=1msinmx
So,
∫x2cosmxdx=uv−∫vdu=x2msin(mx)−∫(1msinmx)(2xdx)=x2msin(mx)−2m∫xsin(mx)dx
To evaluate ∫xsin(mx)dx, we must use integration by parts once more, so...
If we let u1=x and dv1=sin(mx)dx, then
du1=dx and v1=∫sin(mx)dx=1m(−cos(mx))
Thus,
∫xsin(mx)dx=u1v1−∫v1du1=−xmcos(mx)−∫−cos(mx)dxm=−xcos(mx)m+sin(mx)m2+c
Therefore,
∫x2cosmxdx=x2msin(mx)−2m[−xcos(mx)m+sin(mx)m2+c]=x2sin(mx)m+2xcos(mx)m2−2sin(mx)m3+c
This comment has been removed by a blog administrator.
ReplyDelete