Friday, January 24, 2020

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 8

Evaluate x2cosmxdx by using Integration by parts.
If we let u=x2 and dv=cosmxdx, then
du=2xdx and v=cosmxdx=1msinmx

So,

x2cosmxdx=uvvdu=x2msin(mx)(1msinmx)(2xdx)=x2msin(mx)2mxsin(mx)dx


To evaluate xsin(mx)dx, we must use integration by parts once more, so...
If we let u1=x and dv1=sin(mx)dx, then
du1=dx and v1=sin(mx)dx=1m(cos(mx))

Thus,

xsin(mx)dx=u1v1v1du1=xmcos(mx)cos(mx)dxm=xcos(mx)m+sin(mx)m2+c


Therefore,



x2cosmxdx=x2msin(mx)2m[xcos(mx)m+sin(mx)m2+c]=x2sin(mx)m+2xcos(mx)m22sin(mx)m3+c

1 comment: