Friday, January 10, 2020

Single Variable Calculus, Chapter 5, 5.3, Section 5.3, Problem 74

Find the integral $\displaystyle \int^2_1 \frac{4 + u^2}{u^3} du$


$
\begin{equation}
\begin{aligned}

\int \frac{4 + u^2}{u^3} du =& \int \left( \frac{4}{u^3} + \frac{u^2}{u^3} \right ) du
\\
\\
\int \frac{4 + u^2}{u^3} du =& \int \left( \frac{4}{u^3} + \frac{1}{u} \right) du
\\
\\
\int \frac{4 + u^2}{u^3} du =& \int \frac{4}{u^3} du + \int \frac{1}{u} du
\\
\\
\int \frac{4 + u^2}{u^3} du =& \int 4 u^{-3} du + \int \frac{1}{u} du
\\
\\
\int \frac{4 + u^2}{u^3} du =& 4 \left( \frac{u^{-3 + 1}}{-3 + 1} \right) + lnu + C
\\
\\
\int \frac{4 + u^2}{u^3} du =& \frac{4u^{-2}}{-2} + lnu + C
\\
\\
\int \frac{4 + u^2}{u^3} du =& -2u^{-2} + lnu + C


\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

\int^2_1 \frac{4 + u^2}{u^3} du =& \frac{-2}{(2)}^2 + ln 2 + C - \left[ \frac{-2}{(1)^2} + lnl + C \right]
\\
\\
\int^2_1 \frac{4 + u^2}{u^3} du =& \frac{-2}{4} + ln2 + C + 2 - 0 - C
\\
\\
\int^2_1 \frac{4 + u^2}{u^3} du =& \frac{-1}{2} + ln2 + 2
\\
\\
\int^2_1 \frac{4 + u^2}{u^3} du =& \frac{-1 + 4}{2} + ln2
\\
\\
\int^2_1 \frac{4 + u^2}{u^3} du =& \frac{3}{2} + ln2

\end{aligned}
\end{equation}
$

No comments:

Post a Comment