Tuesday, January 21, 2020

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 36

Determine the derivative of the function f(t)=tt2+4


f(t)=ddt(tt2+4)12f(t)=12(tt2+4)12ddt(tt2+4)f(t)=12(tt2+4)12[(t2+4)ddt(t)(t)ddt(t2+4)(t2+4)2]f(t)=12(tt2+4)12[(t2+4)(1)(t)(2t)(t2+4)2]f(t)=12(tt2+4)12[t2+42t2(t2+4)2]f(t)=12(tt2+4)12[t2+4(t2+4)2]f(t)=12(t)12(4t2)(t2+4)12(t2+4)2f(t)=4t22(t)12(t2+4)32

No comments:

Post a Comment