Determine the derivative of the function f(t)=√tt2+4
f′(t)=ddt(tt2+4)12f′(t)=12(tt2+4)−12ddt(tt2+4)f′(t)=12(tt2+4)−12[(t2+4)ddt(t)−(t)ddt(t2+4)(t2+4)2]f′(t)=12(tt2+4)−12[(t2+4)(1)−(t)(2t)(t2+4)2]f′(t)=12(tt2+4)−12[t2+4−2t2(t2+4)2]f′(t)=12(tt2+4)−12[−t2+4(t2+4)2]f′(t)=12(t)−12(4−t2)(t2+4)−12(t2+4)2f′(t)=4−t22(t)12(t2+4)32
No comments:
Post a Comment