Determine the functions $f \circ g, \quad g \circ f, \quad  f \circ f$ and $g \circ g$ and their domains if $f(x) = 6x - 5$ and $\displaystyle g(x) = \frac{x}{2}$	
    For $f \circ g$	
	
	$
	\begin{equation}
	\begin{aligned}
		f \circ g &= f(g(x)) && \text{Definition of } f \circ g\\
        \\
        f \circ g &= 6 \left( \frac{x}{2} \right) - 5 && \text{Definition of } g\\
        \\
        f \circ g &= 3x - 5 && \text{Definition of  } f
	\end{aligned}
	\end{equation}
	$
	    
    The domain of the function is $(-\infty, \infty)$
    For $g \circ f$	
	
	$
	\begin{equation}
	\begin{aligned}
		g \circ f &= g(f(x)) && \text{Definition of } g \circ f\\
        \\
        g \circ f  &= \frac{6x-5}{2} && \text{Definition of } g\\
        \\
        g \circ f  &= 3x - \frac{5}{2} && \text{Definition of  } f
	\end{aligned}
	\end{equation}
	$
	   
    The domain of the function is $(-\infty,\infty)$
    
    For $f \circ f$	
	
	$
	\begin{equation}
	\begin{aligned}
		f \circ f &= f(f(x)) && \text{Definition of } f \circ f\\
        \\
        f \circ f &= 6(6x-5)- 5 && \text{Definition of } f\\
        \\
        f \circ f &= 36x - 30 - 5 && \text{Simplify}\\
        \\ 
        f \circ f &= 36x - 35 && \text{Definition of  } f
	\end{aligned}
	\end{equation}
	$
	   
    The domain of the function is $(-\infty,\infty)$
    
    For $g \circ g$	
	
	$
	\begin{equation}
	\begin{aligned}
		g \circ g &= g(g(x)) && \text{Definition of } g \circ g\\
        \\
        g \circ g  &= \frac{\frac{x}{2}}{2} && \text{Definition of } g\\
        \\
        g \circ g  &=  \frac{x}{4} && \text{Definition of  } g
	\end{aligned}
	\end{equation}
	$
	   
    The domain of the function is $(-\infty,\infty)$
No comments:
Post a Comment