Tuesday, December 17, 2019

Single Variable Calculus, Chapter 3, Review Exercises, Section Review Exercises, Problem 38

Find y of y=(x1)(x4)(x2)(x3)


y=ddx[(x1)(x4)(x2)(x3)]y=(x2)(x3)ddx[(x1)(x4)](x1)(x4)ddx[(x2)(x3)][(x2)(x3)]2y=(x2)(x3)[(x1)ddx(x4)+(x4)ddx(x1)](x1)(x4)[(x2)ddx(x3)+(x3)ddx(x2)](x2)2(x3)2y=(x2)(x3)[(x1)(1)+(x4)(1)](x1)(x4)[(x2)(1)+(x3)(1)](x2)2(x3)2y=(x2)(x3)(x1+x4)(x1)(x4)(x2+x3)(x2)2(x3)2y=(x2)(x3)(2x5)(x1)(x4)(2x5)(x2)2(x3)2y=(2x5)[(x2)(x3)(x1)(x4)](x2)2(x3)2y=(2x5)(\cancelx2\cancel3x\cancel2x+6\cancelx2+\cancel4x+\cancelx4)(x2)2(x3)2y=(2x5)(2)(x2)2(x3)2y=2(2x5)(x2)2(x3)2

No comments:

Post a Comment