Suppose that f and g are the functions whose graphs are shown, let u(x)=f(g(x)),v(x)=g(f(x)) and w(x)=g(g(x)). Find each derivative, if it exist, explain why.
a.) u′(1)
u′(x)=f′(g(x))g′(x)u′(1)=f′(g(1))g′(1)u′(1)=f′(3)g′(1)u′(1)=(3−46−1)(0−62−0)u′(1)=(−14)(−3)u′(1)=34
b.) v′(1)
v′(x)=g′(f(x))f′(x)v′(1)=g′(f(1))f′(1)v′(1)=g′(2)f′(1)v′(1) does not exist because g′(2) doesn't exist.
c.) w′(1)
w′(x)=g′(g(x))g′(x)w′(1)=g′(g(1))g′(1)w′(1)=g′(3)g′(1)w′(1)=(2−05−2)(0−62−0)w′(1)=(23)(−3)w′(1)=−2
No comments:
Post a Comment