Tuesday, December 24, 2019

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 65

Suppose that f and g are the functions whose graphs are shown, let u(x)=f(g(x)),v(x)=g(f(x)) and w(x)=g(g(x)). Find each derivative, if it exist, explain why.







a.) u(1)


u(x)=f(g(x))g(x)u(1)=f(g(1))g(1)u(1)=f(3)g(1)u(1)=(3461)(0620)u(1)=(14)(3)u(1)=34


b.) v(1)


v(x)=g(f(x))f(x)v(1)=g(f(1))f(1)v(1)=g(2)f(1)v(1) does not exist because g(2) doesn't exist.



c.) w(1)


w(x)=g(g(x))g(x)w(1)=g(g(1))g(1)w(1)=g(3)g(1)w(1)=(2052)(0620)w(1)=(23)(3)w(1)=2

No comments:

Post a Comment