Determine the first fifth terms in the expansion $(ab-1)^{20}$
    Recall that the Binomial Theorem is defined as
    Substituting $a = ab$ and $ b = -1 $ gives
    
    $
    (ab - 1)^{20} = 
    \left(
    \begin{array}{c}
    	20\\
        0
    \end{array}
    \right)
    (ab)^{20} + 
    \left(
    \begin{array}{c}
    	20\\
        1
    \end{array}
    \right)         
    (ab)^{19} (-1) +
    \left(
    \begin{array}{c}
    	20\\
        2
    \end{array}
    \right)         
    (ab)^{18} (-1)^2 +
     \left(
    \begin{array}{c}
    	20\\
        3
    \end{array}
    \right)         
    (ab)^{17} (-1)^3 +
    \left(
    \begin{array}{c}
    	20\\
        4
    \end{array}
    \right)         
    (ab)^{16} (-1)^4 +
    ....           
    $
    
    Thus, the 5th term is
  	
	$
	\begin{equation}
	\begin{aligned}
	&= 
    \left(
    \begin{array}{c}
    	20\\
        4
    \end{array}
    \right)    
    (ab)^{16}(-1)^4\\
    \\
    &= 
    \left( \frac{20!}{4!(20-4)!} \right) (ab)^{16}(-1)^4\\
    \\
    &= 4845 a^{16} b^{16}
    
	\end{aligned}
	\end{equation}
	$
No comments:
Post a Comment