Differentiate y=√x+43√x−5
By applying Quotient Rule, we get
y′=(x13−5)⋅ddx(x12+4)−(x12+4)⋅ddx(x13−5)(x13−5)2y′=(x13−5)(12x−12)−(x12+4)(13x−23)(x13−5)2y′=12x−12+13−52x−12−13x12−23−43x−23(x13−5)2y′=12x−16−52x−12−13x−16−43x−23(x13−5)2y′=16x−16−52x−12−43x−23(x13−5)2y′=16x16−52x12−43x23(x13−5)2y′=x76−16−5(3)(x76−12)−4(2)(x76−23)6x76(x13−5)2Get the LCD 6x76y′=x66−15x23−8x126x76(x13−5)2y′=x−15x23−8x126x76(x13−5)2
No comments:
Post a Comment