Sunday, December 1, 2019

Calculus and Its Applications, Chapter 1, 1.6, Section 1.6, Problem 40

Differentiate y=x+43x5
By applying Quotient Rule, we get

y=(x135)ddx(x12+4)(x12+4)ddx(x135)(x135)2y=(x135)(12x12)(x12+4)(13x23)(x135)2y=12x12+1352x1213x122343x23(x135)2y=12x1652x1213x1643x23(x135)2y=16x1652x1243x23(x135)2y=16x1652x1243x23(x135)2y=x76165(3)(x7612)4(2)(x7623)6x76(x135)2Get the LCD 6x76y=x6615x238x126x76(x135)2y=x15x238x126x76(x135)2

No comments:

Post a Comment