Sunday, November 24, 2019

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 52

a.) y=x(1+x2) is a curve called Serpentine. Find the equation of the tangent line to this curve at P(3,0.3)

Required:

Equation of the tangent line to the curve at P(3,0.3)

Solution:

Let y=m (slope)


y=m=(1+x2)ddx(x)[(x)ddx(1+x2)](1+x2)2y=m=(1+x2)(1)(x)(2x)(1+x2)2y=m=1+x22x2(1+x2)2m=1x2(1+x2)2Substitute the value of x which is 3m=1(3)2[1+(3)2]2Simplify the equationm=8100Reduce to lowest termm=225


Solving for the equation of the tangent line:


yy1=m(xx1)Substitute the value of the slope (m) and the given pointy0.3=225(x3)Multiply 225 the equationy0.3=2x+625Add 0.3 to each sidesy=2x+625+0.3Get the LCDy=2x+6+7.525Combine like termsy=2x+13.525 or 0.08x+0.54Equation of the tangent line to the curve at P(3,0.3)


b.) Graph the curve and the tangent line on part (a).

No comments:

Post a Comment