Determine $\displaystyle \lim \limits_{s \to 16} \frac{4 - \sqrt{s}}{s - 16}$
$
\begin{equation}
\begin{aligned}
\lim \limits_{s \to 16} \frac{4 - \sqrt{s}}{s - 16} \cdot \frac{4 + \sqrt{s}}{4 + \sqrt{s}}
&= \lim \limits_{s \to 16} \frac{16 - s}{(s - 16)(4 + \sqrt{s})}
&& \text{Multiply both numerator and denominator by $(\sqrt{4} + \sqrt{s})$}\\
\\
&= \lim \limits_{s \to 16} \frac{-1\cancel{(s - 16)}}{\cancel{(s - 16)}(4 + \sqrt{s})}
&& \text{Factor numerator and cancel out like terms}\\
\\
&= \frac{-1}{4 + \sqrt{16}} = \frac{-1}{4 + 4}
&& \text{Substitute value of $s$ and simplify}\\
\\
& \fbox{$= \displaystyle \frac{-1}{8}$}
\end{aligned}
\end{equation}
$
No comments:
Post a Comment