Determine the function h(x)=ln(x+√x2−1)
h′(x)=ddxln(x+√x2−1)h′(x)=1x+√x2−1⋅ddx(x+√x2+1)h′(x)=1x+√x2−1⋅ddx[x+(x2−1)12]h′(x)=1x+√x2−1[1+12(x2−1)−12⋅ddx(x2−1)]h′(x)=1x+√x2−1[1+\cancel2x\cancel2(x2−1)12]h′(x)=1x+√x2−1[1+x(x2−1)12]h′(x)=1x+√x2−1[(x2−1)12+x(x2−1)12]h′(x)=(x2−1)12+xx(x2−1)12+x2−1 or h′(x)=√x2−1+xx√x2−1+x2−1
No comments:
Post a Comment