Thursday, October 17, 2019

Single Variable Calculus, Chapter 7, 7.4-1, Section 7.4-1, Problem 12

Determine the function h(x)=ln(x+x21)

h(x)=ddxln(x+x21)h(x)=1x+x21ddx(x+x2+1)h(x)=1x+x21ddx[x+(x21)12]h(x)=1x+x21[1+12(x21)12ddx(x21)]h(x)=1x+x21[1+\cancel2x\cancel2(x21)12]h(x)=1x+x21[1+x(x21)12]h(x)=1x+x21[(x21)12+x(x21)12]h(x)=(x21)12+xx(x21)12+x21 or h(x)=x21+xxx21+x21

No comments:

Post a Comment