Solve the inequality $|-2x - 4| \geq 5$, and graph the solution set.
The absolute value inequality is rewritten as
$|-2x - 4| \geq 5$ or $-2x - 4 \leq -5$,
because $-2x - 4$ must represent a number that is more than $5$ units from on either side of the number line. We can solve the compound inequality.
$
\begin{equation}
\begin{aligned}
|-2x - 4| \geq & 5 && \qquad \text{or} &&& -2x - 4 \leq & -5
&&
\\
-2x \geq & 9 && \qquad \text{or} &&& -2x \leq & -1
&& \text{Add } 4
\\
x \leq & \frac{-9}{2} && \qquad \text{or} &&& x \geq & \frac{1}{2}
&& \text{Divide $-2$. Reverse the inequality symbols.}
\end{aligned}
\end{equation}
$
The solution set is $\displaystyle \left( - \infty, \frac{-9}{2} \right) \bigcup \left[ \frac{1}{2}, \infty \right)$.
No comments:
Post a Comment