Monday, September 16, 2019

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 30

Determine the lim. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.

\displaystyle \lim_{x \to 0} \frac{\cos mx - \cos nx}{x^2} = \frac{\cos m(0) - \cos n(0)}{0^2} = \frac{1-1}{0} = \frac{0}{0} \text{ Indeterminate}

Thus by applying L'Hospital's Rule...

\begin{equation} \begin{aligned} \lim_{x \to 0} \frac{\cos mx - \cos nx}{x^2} &= \lim_{x \to 0} \left[ \frac{(- \sin mx)(m) - (-\sin nx)(n)}{2x} \right]\\ \\ &= \lim_{x \to 0} \left[ \frac{n \sin(nx) - m \sin(mx)}{2x} \right] \end{aligned} \end{equation}


We will still get indeterminate form if we evaluate the limit, so we apply L'Hospital's Rule once more...


\begin{equation} \begin{aligned} \lim_{x \to 0} \left[ \frac{n \sin(nx) - m \sin(mx)}{2x} \right] &= \lim_{x \to 0} \left[ \frac{n \cos (nx)(n)-m\cos(mx)(m)}{2} \right]\\ \\ &= \lim_{x \to 0} \left[ \frac{n^2 \cos (nx) - m^2 - \cos (mx)}{2} \right]\\ \\ &= \frac{n^2 \cos(n(0)) -m^2 \cos(m(0))}{2}\\ \\ &= \frac{n^2(\cos 0 ) - m^2(\cos 0)}{2}\\ \\ &= \frac{n^2(1) - m^2(1)}{2}\\ \\ &= \frac{n^2-m^2}{2} \end{aligned} \end{equation}

No comments:

Post a Comment