You need to go from trigonometric form in standard form of the complex number, hence, you just need to simplify it replacing the values of trigonometric functions for cos (5pi/12) and sin (5pi/12) , such that:
z = 6(cos (5pi/12) + i*sin (5pi/12))
cos(5pi/12) = cos (6pi/12 - pi/12) = cos(pi/2 - pi/12) = sin(pi/12)
sin(pi/12) = sin((pi/6)/2) = sqrt((1 - cos(pi/6))/2)
sin(pi/12) = (sqrt(2 - sqrt3))/2
sin(5pi/12) = cos(pi/12) = (sqrt(2 + sqrt3))/2
z = 6((sqrt(2 - sqrt3))/2 + i*(sqrt(2 + sqrt3))/2)
z = 3(sqrt(2 - sqrt3) + i*(sqrt(2 + sqrt3)))
Hence, the standard form of the given complex number is z = 3(sqrt(2 - sqrt3) + i*(sqrt(2 + sqrt3))).
No comments:
Post a Comment