Simplify the expression $\displaystyle \left( \frac{xy^{-2}z^{-3}}{x^2y^3z^{-4}}  \right)^{-3}$ and eliminate any negative exponents.
  
	$
	\begin{equation}
	\begin{aligned}
		\left( \frac{xy^{-2}z^{-3}}{x^2y^3z^{-4}}  \right)^{-3} &= \left( \frac{x^2y^3 z^{-4}}{xy^{-2}z^{-3}} \right)^{3} && \text{Law: } \left( \frac{a}{b} \right)^{-n} = \left( \frac{b}{a} \right)^n\\
        \\
        &= \frac{(x^2)^3(y^3)^3(z^{-4})^3}{x^3(y^{-2})^3(z^{-3})^3} && \text{Law: } (ab)^n = a^nb^n\\
        \\
        &= \frac{x^6 y^9 z^{-12}}{x^3y^{-6}z^{-9}} && \text{Law: } \frac{a^m}{a^n} = a^{m-n}\\
        \\
        &= x^{6-3} y^{9-(-6)} z^{-12-(-9)} && \text{Simplify}\\
        \\
        &= x^3 y^{15} z^{-3} && \text{Definition of negative exponent } a^{-n} = \frac{1}{a^n}\\
        \\
        &= \frac{x^3y^{15}}{z^3}
 	\end{aligned}
	\end{equation}
	$
No comments:
Post a Comment