Find the value of $x$ to make the statement $(\log x)^3 = 3 \log x$
 	
	$
	\begin{equation}
	\begin{aligned}
		(\log x)^3 &= 3 \log x\\
        \\
        (\log x)(\log x)(\log x) &= 3 \log x && \text{Expand } (\log x)^3\\
        \\
        \frac{\left( \cancel{\log x} \right) (\log x) (\log x)}{\cancel{\log x}} &= \frac{3 \cancel{\log x}}{\cancel{\log x }} && \text{Divide by } \log x\\
        \\
        (\log x)(\log x) &= 3 && \text{Cancel out like terms}\\
        \\
        (\log x)^2 &= 3 && \text{Simplify}\\
        \\
        \log x &= \sqrt{3} && \text{Take the square root of each side}\\
        \\
        10^{\log x} &= 10^{\sqrt{3}} && \text{Raise 10 to each side}\\
        \\
        x &= 10^{\sqrt{3}}
	\end{aligned}
	\end{equation}
	$
		
    Then by checking,
	
	$
	\begin{equation}
	\begin{aligned}
		\left(\log 10^{\sqrt{3}}\right)^3 &= 3 \log 10^{\sqrt{3}}\\
        \\
        5.1962 &= 5.1962
	\end{aligned}
	\end{equation}
	$
No comments:
Post a Comment