Find all horizontal and vertical asymptotes of the rational function $\displaystyle r(x) = \frac{8x^2+ 1}{4x^2 + 2x - 6}$.
Since the degree of the numerator is equal to the degree of the denominator, then the horizontal asymptote = $\displaystyle \frac{\text{leading coefficient of the numerator}}{\text{leading coefficient of the denominator}} = \frac{8}{4} = 2$. Thus, the horizontal asymptote is $y = 2$.
To determine the vertical asymptotes, we set $4x^2 + 2x - 6 = 0$.
$
\begin{equation}
\begin{aligned}
4x^2 + 2x - 6 =& 0
&&
\\
\\
x^2 + \frac{1}{2} x - \frac{3}{2} =& 0
&& \text{Divide by } 4
\\
\\
(x - 1)\left( x + \frac{3}{2} \right) =& 0
&& \text{Factor}
\\
\\
x - 1 =& 0 \text{ and } x + \frac{3}{2} = 0
&& \text{Zero Product Property}
\end{aligned}
\end{equation}
$
Thus, the vertical asymptotes are $x = 1$ and $\displaystyle x = - \frac{3}{2}$.
No comments:
Post a Comment