The period of a pendulum varies directly with the square root of the length of the pendulum.       
	a.) Express this relationship by writing an equation.
	Let $T$ and $\ell$ be the period of length of the pendulum respectively. So, $T = k\sqrt{\ell}$
    
    b.) To double the period, how would we have to change the length $\ell$ 
    Let $T_1$ and $\ell_1$ be the information of the original pendulum. On the other hand, $T_2$ and $\ell_2$ is the information of the new pendulum.
   	
	$
	\begin{equation}
	\begin{aligned}
		T_1 &= k \sqrt{\ell_1}\\
        \\
        k &= \frac{T_1}{\sqrt{\ell_1}} && \Longleftarrow \text{Equation 1}\\
        \\
        T_2 &= k \sqrt{\ell_2} && \text{Recall that } T_2 = 2T_1\\
        \\
        2T_1 &= k \sqrt{\ell_2}\\
        \\
        k &= \frac{2T_1}{\sqrt{\ell_2}} && \Longleftarrow \text{Equation 2}
	\end{aligned}
	\end{equation}
	$
	
    Use equations 1 and 2 to solve for the requested length.
	
	$
	\begin{equation}
	\begin{aligned}
		\frac{T_1}{\sqrt{\ell_1}} &= \frac{2T_1}{\sqrt{\ell_2}} && \text{Cancel out } T_1\\
        \\
        \frac{1}{\sqrt{\ell_1}} &= \frac{2}{\sqrt{\ell_2}} && \text{Apply cross multiplication}\\
        \\
        \sqrt{\ell_2} &= 2 \sqrt{\ell_1} && \text{Square both sides}\\
        \\
        \ell_2 &= 4 \ell_1
	\end{aligned}
	\end{equation}
	$
	    
    It shows that, in order to double the period, the length must be four times the original length.
No comments:
Post a Comment