Take the derivative of $y = (4 \sqrt{x} + 3 )x^3$: first, use the Product Rule; then, 
    by multiplying the expression before differentiating. Compare your results as a check.
	By using Product Rule,
 	
	$
	\begin{equation}
	\begin{aligned}
		y' = \frac{d}{dx} \left[ (4\sqrt{x} + 3) x^3 \right] &= (4\sqrt{x} + 3) \cdot \frac{d}{dx} (x^3) + x^3 \cdot \frac{d}{dx} (4 \sqrt{x} + 3)\\
        \\
        &= (4 \sqrt{x} + 3)(3x^2) + x^3 \left( \frac{4}{2\sqrt{x}} \right)\\
        \\
        &= \left( 4x^{\frac{1}{2}} + 3 \right) (3x^2) + x^3 \left( \frac{2}{x^{\frac{1}{2}}} \right)\\
        \\
        &= 12x^{\frac{5}{2}} + 9x^2 + 2x^{\frac{5}{2}}\\
        \\
        &= 14x^{\frac{5}{2}} + 9x^2
	\end{aligned}
	\end{equation}
	$
	
    
    By multiplying the expression first,
  	
	$
	\begin{equation}
	\begin{aligned}
		y = (4 \sqrt{x} + 3)x^3 = \left( 4x^{\frac{1}{2}} + 3 \right) x^3 = 4x^{\frac{7}{2}} + 3x^3 \\
        \\
        y' &= \frac{d}{dx} \left[ 4x^{\frac{7}{2}} + 3x^3 \right] = 4 \cdot \frac{7}{2} x^{\frac{7}{2} - 1} + 3 \cdot 3 x^{3 - 1}\\
        \\
        &= 14x^{\frac{5}{2}} + 9x^2 \text{ or } 14\sqrt{x^5} + 9x^2
	\end{aligned}
	\end{equation}
	$
	   
    
    Both results agree.
No comments:
Post a Comment