Tuesday, August 27, 2019

Single Variable Calculus, Chapter 5, 5.3, Section 5.3, Problem 28

Find the integral 10(3+xx)dx

Using 2nd Fundamental Theorem of Calculus

baf(x)dx=F(b)F(a), where F is any anti-derivative of f.

Let f(x)=3+xx or f(x)=3+(x)23, then


F(x)=3(x0+10+1)+(x32+132+1)+CF(x)=3x+x5252+CF(x)=3x+2x525+C



10(3+xx)dx=F(1)F(0)10(3+xx)dx=3(1)+2(1)525+C[3(0)+2(0)525+C]10(3+xx)dx=3+25+C00C10(3+xx)dx=15+2510(3+xx)dx=175 or 10(3+xx)dx=3.4

No comments:

Post a Comment