Find the integral $\displaystyle \int^1_0 (3 + x \sqrt{x}) dx$
Using 2nd Fundamental Theorem of Calculus
$\displaystyle \int^b_a f(x) dx = F(b) - F(a)$, where $F$ is any anti-derivative of $f$.
Let $\displaystyle f(x) = 3 + x \sqrt{x}$ or $f(x) = 3 + (x)^{\frac{2}{3}}$, then
$
\begin{equation}
\begin{aligned}
F(x) =& 3 \left( \frac{x^{0 + 1}}{0 + 1} \right) + \left( \frac{x^{\frac{3}{2} + 1}}{\displaystyle \frac{3}{2} + 1} \right) + C
\\
\\
F(x) =& 3x + \frac{x^{\frac{5}{2}}}{\displaystyle \frac{5}{2}} + C
\\
\\
F(x) =& 3x + \frac{2x^{\frac{5}{2}}}{5} + C
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
& \int^1_0 (3 + x \sqrt{x}) dx = F(1) - F(0)
\\
\\
& \int^1_0 (3 + x \sqrt{x}) dx = 3(1) + \frac{2(1)^{\frac{5}{2}}}{5} + C - \left[ 3(0) + \frac{2(0)^{\frac{5}{2}}}{5} + C \right]
\\
\\
& \int^1_0 (3 + x \sqrt{x}) dx = 3 + \frac{2}{5} + C - 0 - 0 - C
\\
\\
& \int^1_0 (3 + x \sqrt{x}) dx = \frac{15 + 2}{5}
\\
\\
& \int^1_0 (3 + x \sqrt{x}) dx = \frac{17}{5}
\\
\\
& \text{ or }
\\
\\
& \int^1_0 (3 + x \sqrt{x}) dx = 3.4
\end{aligned}
\end{equation}
$
No comments:
Post a Comment