Find the integral ∫10(3+x√x)dx
Using 2nd Fundamental Theorem of Calculus
∫baf(x)dx=F(b)−F(a), where F is any anti-derivative of f.
Let f(x)=3+x√x or f(x)=3+(x)23, then
F(x)=3(x0+10+1)+(x32+132+1)+CF(x)=3x+x5252+CF(x)=3x+2x525+C
∫10(3+x√x)dx=F(1)−F(0)∫10(3+x√x)dx=3(1)+2(1)525+C−[3(0)+2(0)525+C]∫10(3+x√x)dx=3+25+C−0−0−C∫10(3+x√x)dx=15+25∫10(3+x√x)dx=175 or ∫10(3+x√x)dx=3.4
No comments:
Post a Comment