Thursday, August 29, 2019

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 52

Determine whether f(0) exists in the function
f(x)={x2sin(1x)ifx00ifx=0



Based from the definition,



f(a)=lim



\begin{equation} \begin{aligned} f'(0) & = \lim\limits_{x \to 0} \frac{x^2 \sin \left( \frac{1}{x}\right) - f(0)}{x-0}\\ f'(0) & = \lim\limits_{x \to 0} \frac{x\cancel{^2}\sin \left( \frac{1}{x}\right)}{\cancel{x}}\\ f'(0) & = \lim\limits_{x \to 0} x \sin \left(\frac{1}{x}\right) \end{aligned} \end{equation}



Note that we cannot use \displaystyle \lim\limits_{x \to 0} x \sin \left(\frac{1}{x}\right) = \lim\limits_{x \to 0} x \cdot \lim\limits_{x \to 0} \sin \left(\frac{1}{x}\right)



because \displaystyle \lim\limits_{x \to 0} \sin \left(\frac{1}{x}\right) does not exist. However, since



\quad\displaystyle -1 \leq \sin \left(\frac{1}{x}\right) \leq 1



We have,



\quad\displaystyle -x^2 \leq \sin \left(\frac{1}{x}\right) \leq x^2



We know that,



\quad\displaystyle \lim\limits_{x \to 0^-} (-x^2) = -0 = 0 \quad \text{ and } \quad \lim\limits_{x \to 0^+} x^2 = 0



Taking f(x) = -x^2, \displaystyle g(x) = x^2 \sin \left(\frac{1}{x}\right) and h(x) = x^2 in the squeeze theorem we obtain



\quad\displaystyle \lim\limits_{x \to 0} x^2 \sin \left( \frac{1}{x}\right) = 0



Therefore,



\quad f'(0) exists and is equal to 0.

No comments:

Post a Comment