Friday, June 28, 2019

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 32

Determine the integral tan6(ay)dy

Let u=ay, then du=ady, so dy=dua. Thus,


tan6(ay)dy=tan6uduatan6(ay)dy=1atan6udutan6(ay)dy=1atan4utan2uduApply Trigonometric Identity sec2u=tan2u+1tan6(ay)dy=1atan4u(sec2u1)dutan6(ay)dy=1a(tan4usec2utan4u)dutan6(ay)dy=1atan4usec2udu1atan4udu


We integrate the equation term by term

@ 1st term

1atan4usec2udu

Let v=tanu, then dv=sec2udu. Thus


1atan4usec2udu=1av4dv1atan4usec2udu=1a(v4+14+1)+c1atan4usec2udu=v55a+c1atan4usec2udu=(tanu)55a+c1atan4usec2udu=tan5u5a+c


@ 2nd term



1atan4udu=1atan2utan2uduApply Trigonometric Identity sec2u=tan2u+11atan4udu=1atan2u(sec2u1)du1atan4udu=1a(tan2usec2utan2u)du1atan4udu=1atan2usec2udu1atan2uduApply Trigonometric Identity sec2u=tan2u+1 for the 2nd term1atan4udu=1atan2usec2udu1a(sec2u1)du


For the 1st term, let v=tanu, then dv=sec2udu. Thus,


1atan4udu=1av2dv1a(tanuu)+c1atan4udu=1a(v2+12+1)1a(tanuu)+c1atan4udu=v33atanua+ua+cSubstitute value of v1atan4udu=(tanu)33atanua+ua+c1atan4udu=tan3u3atanua+ua+c


Combine the results of the integration term by term


tan6(ay)dy=tan5u5a(tan3u3atanuatanua+ua)+ctan6(ay)dy=tan5u5atan3u3a+tanuaua+cSubstitute value of utan6(ay)dy=tan5(ay)5atan3(ay)3a+tan(ay)a\cancelay\cancela+ctan6(ay)dy=tan5(ay)5atan3(ay)3a+tan(ay)ay+c

No comments:

Post a Comment