Determine the integral ∫tan6(ay)dy
Let u=ay, then du=ady, so dy=dua. Thus,
∫tan6(ay)dy=∫tan6u⋅dua∫tan6(ay)dy=1a∫tan6udu∫tan6(ay)dy=1a∫tan4utan2uduApply Trigonometric Identity sec2u=tan2u+1∫tan6(ay)dy=1a∫tan4u(sec2u−1)du∫tan6(ay)dy=1a∫(tan4usec2u−tan4u)du∫tan6(ay)dy=1a∫tan4usec2udu−1a∫tan4udu
We integrate the equation term by term
@ 1st term
1a∫tan4usec2udu
Let v=tanu, then dv=sec2udu. Thus
1a∫tan4usec2udu=1a∫v4dv1a∫tan4usec2udu=1a(v4+14+1)+c1a∫tan4usec2udu=v55a+c1a∫tan4usec2udu=(tanu)55a+c1a∫tan4usec2udu=tan5u5a+c
@ 2nd term
1a∫tan4udu=1a∫tan2utan2uduApply Trigonometric Identity sec2u=tan2u+11a∫tan4udu=1a∫tan2u(sec2u−1)du1a∫tan4udu=1a∫(tan2usec2u−tan2u)du1a∫tan4udu=1a∫tan2usec2udu−1a∫tan2uduApply Trigonometric Identity sec2u=tan2u+1 for the 2nd term1a∫tan4udu=1a∫tan2usec2udu−1a∫(sec2u−1)du
For the 1st term, let v=tanu, then dv=sec2udu. Thus,
1a∫tan4udu=1a∫v2dv−1a(tanu−u)+c1a∫tan4udu=1a(v2+12+1)−1a(tanu−u)+c1a∫tan4udu=v33a−tanua+ua+cSubstitute value of v1a∫tan4udu=(tanu)33a−tanua+ua+c1a∫tan4udu=tan3u3a−tanua+ua+c
Combine the results of the integration term by term
∫tan6(ay)dy=tan5u5a−(tan3u3a−tanua−tanua+ua)+c∫tan6(ay)dy=tan5u5a−tan3u3a+tanua−ua+cSubstitute value of u∫tan6(ay)dy=tan5(ay)5a−tan3(ay)3a+tan(ay)a−\cancelay\cancela+c∫tan6(ay)dy=tan5(ay)5a−tan3(ay)3a+tan(ay)a−y+c
No comments:
Post a Comment