Determine the derivative of the function y=√x+√x+√x
y′=ddx(√x+√x+√x)y′=ddx(x+√x+√x)12y′=12(x+√x+√x)−12ddx(x+√x+√x)y′=12(x+√x+√x)−12[ddx(x)+ddx(x+√x)12]y′=12(x+√x+√x)−12[1+12(x+√x)−12ddx(x+√x)]y′=12(x+√x+√x)−12[1+12(x+√x)−12(ddx(x)+ddx(x)12)]y′=12(x+√x+√x)−12[1+12(x+√x)−12(1+12(x)−12)]y′=[12(x+√x+√x)12][1+(12√x+√x)(1+12√x)]y′=1+1+12√x2√x+√x2√x√x+√x
No comments:
Post a Comment