Saturday, June 29, 2019

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 42

Determine the derivative of the function y=x+x+x


y=ddx(x+x+x)y=ddx(x+x+x)12y=12(x+x+x)12ddx(x+x+x)y=12(x+x+x)12[ddx(x)+ddx(x+x)12]y=12(x+x+x)12[1+12(x+x)12ddx(x+x)]y=12(x+x+x)12[1+12(x+x)12(ddx(x)+ddx(x)12)]y=12(x+x+x)12[1+12(x+x)12(1+12(x)12)]y=[12(x+x+x)12][1+(12x+x)(1+12x)]y=1+1+12x2x+x2xx+x

No comments:

Post a Comment