Saturday, June 22, 2019

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 46

Determine the derivative of the function y=[x+(x+sin2x)3]4


y=ddx[x+(x+sin2x)3]4y=4[x+(x+sin2x)3]3ddx[x+(x+sin2x)3]y=4[x+(x+sin2x)3]3[ddx(x)+ddx(x+sin2x)3]y=4[x+(x+sin2x)3]3[1+3(x+sin2x)2ddx(x+sin2x)]y=4[x+(x+sin2x)3]3[1+3(x+sin2x)2(ddx(x)+ddx(sinx)2)]y=4[x+(x+sin2x)3]3[1+3(x+sin2x)2(1+2(sinx)ddx(sinx))]y=4[x+(x+sin2x)3]3[1+3(x+sin2x)2(1+2sinxcosx)](Recall the Double Angle Formula (sin2x=2sinxcosx))y=4[x+(x+sin2x)3]3[1+3(x+sin2x)2(1+sin2x)]

No comments:

Post a Comment