Determine the derivative of the function y=[x+(x+sin2x)3]4
y′=ddx[x+(x+sin2x)3]4y′=4[x+(x+sin2x)3]3ddx[x+(x+sin2x)3]y′=4[x+(x+sin2x)3]3[ddx(x)+ddx(x+sin2x)3]y′=4[x+(x+sin2x)3]3[1+3(x+sin2x)2ddx(x+sin2x)]y′=4[x+(x+sin2x)3]3[1+3(x+sin2x)2(ddx(x)+ddx(sinx)2)]y′=4[x+(x+sin2x)3]3[1+3(x+sin2x)2(1+2(sinx)ddx(sinx))]y′=4[x+(x+sin2x)3]3[1+3(x+sin2x)2(1+2sinxcosx)](Recall the Double Angle Formula (sin2x=2sinxcosx))y′=4[x+(x+sin2x)3]3[1+3(x+sin2x)2(1+sin2x)]
No comments:
Post a Comment