Evaluate the expression
(52)(53)
Recall that the binomial coefficient is denoted by (nr) and is defined by
Substituting n=5 and r=2 gives
52=5!2!(5−2)!=5!2!3!=5⋅4⋅\cancel3⋅2⋅1(2⋅1)(\cancel3⋅2⋅1)=5⋅42⋅1=202=10
Substituting n=5 and r=3 gives
(53)=5!3!(5−3)!=5!3!2!=5⋅4⋅\cancel3⋅2⋅1\cancel3⋅2⋅1(2⋅1)=5⋅42⋅1=202=10
Thus,
(52)(53)=(10)(10)=100
No comments:
Post a Comment