A rancher with $750$ ft of fencing wants to enclose a rectangular area and divide into four pens with fencing parallel to one side of the rectangle.
a.) Find a function that models the total area of the four pens.
b.) Find the largest possible area of the four pens.
a.) If the area of one pen is $A = xy$, then the total area of the four pens is $A_T = 4xy$. Since the $750$ ft of fencing material corresponds to the perimeter of the lot, then,
$
\begin{equation}
\begin{aligned}
P =& 8x + 5y
\\
\\
750 =& 8x + 5y
\end{aligned}
\end{equation}
$
Solving for $y$
$\displaystyle y = \frac{750 - 8x}{5}$
Thus,
$
\begin{equation}
\begin{aligned}
A_T =& 4xy = 4x \left( \frac{750 - 8x}{5} \right) = 600x - \frac{32}{5} x^2
\\
\\
A_T =& 600x - \frac{32}{5} x^2
\end{aligned}
\end{equation}
$
b.) The function $A_T$ is a quadratic function with $\displaystyle a = - \frac{32}{5}$ and $b = 600$. Thus, its maximum value occurs when
$\displaystyle x = \frac{-b}{2a} = \frac{-600}{\displaystyle 2 \left( \frac{-32}{5} \right)} = \frac{375}{8}$ ft
Therefore, $A_T$ is maximum at..
$
\begin{equation}
\begin{aligned}
A_T = 600x - \frac{32}{5} x^2 =& 600 \left( \frac{375}{8} \right) - \frac{32}{5} \left( \frac{375}{8} \right)^2
\\
\\
=& \frac{28125}{2} \text{ ft}^2
\end{aligned}
\end{equation}
$
No comments:
Post a Comment