Sunday, June 16, 2019

College Algebra, Chapter 3, 3.6, Section 3.6, Problem 40

Determine the functions fg,gf,ff and gg and their domains if f(x)=x4 and g(x)=|x+4|
For fg,

fg=f(g(x))fg=|x+4|4

By using the property of absolute value

fg=|x+4|4fg=x+44forx>4(x+4)4forx<4


fg=|x+4|4fg=xforx>4x8forx<4

Thus, the domain is (,)

For gf

gf=g(f(x))Definition gfgf=|x4+4|Definition of fgf=|x|Definition of g

Recall that
|x|={xx0xx<0
so the domain of gf is (,)


For ff

ff=f(f(x))Definition of ffff=x44Definition of fff=x8Defintion on f


The domain of ff is (,)

For gg,

gg=g(g(x))Definition of gggg=||x+4|+4|Definition of g

By using property of absolute value

gg=||x+4|+4|gg=x+44forx>4(x+4)4forx<4

Thus, the domain of gg is (,)

No comments:

Post a Comment