Determine the functions f∘g,g∘f,f∘f and g∘g and their domains if f(x)=x−4 and g(x)=|x+4|
For f∘g,
f∘g=f(g(x))f∘g=|x+4|−4
By using the property of absolute value
f∘g=|x+4|−4⟹f∘g=x+4−4forx>−4−(x+4)−4forx<−4
f∘g=|x+4|−4⟹f∘g=xforx>−4−x−8forx<−4
Thus, the domain is (−∞,∞)
For g∘f
g∘f=g(f(x))Definition g∘fg∘f=|x−4+4|Definition of fg∘f=|x|Definition of g
Recall that
|x|={xx≥0−xx<0
so the domain of g∘f is (−∞,∞)
For f∘f
f∘f=f(f(x))Definition of f∘ff∘f=x−4−4Definition of ff∘f=x−8Defintion on f
The domain of f∘f is (−∞,∞)
For g∘g,
g∘g=g(g(x))Definition of g∘gg∘g=||x+4|+4|Definition of g
By using property of absolute value
g∘g=||x+4|+4|⟹g∘g=x+4−4forx>−4−(x+4)−4forx<−4
Thus, the domain of g∘g is (−∞,∞)
No comments:
Post a Comment