Determine the $\displaystyle \lim_{x \to \infty} \frac{\ln \ln x}{x}$. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.         
	By applying L'Hospital's Rule,
	
	$
	\begin{equation}
	\begin{aligned}
		\lim_{x \to \infty} \frac{\ln \ln x}{x} &= \lim_{x \to \infty} \frac{\frac{\frac{d}{dx}\ln(x)}{\ln(x)}}{\frac{d}{dx}(x)}\\
        \\
        &= \lim_{x \to \infty} \frac{\frac{\left(\frac{1}{x}\right)}{\ln x}}{1}\\
        \\
        &= \lim_{x \to \infty} \frac{1}{x \ln x}\\
        \\
        &= \frac{1}{\infty (\ln (\infty))}\\
        \\
        &= \frac{1}{\infty}\\
        \\
        &= 0 
	\end{aligned}
	\end{equation}
	$
No comments:
Post a Comment