Tuesday, May 14, 2019

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 18

Determine the $\displaystyle \lim_{x \to \infty} \frac{\ln \ln x}{x}$. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.

By applying L'Hospital's Rule,

$
\begin{equation}
\begin{aligned}
\lim_{x \to \infty} \frac{\ln \ln x}{x} &= \lim_{x \to \infty} \frac{\frac{\frac{d}{dx}\ln(x)}{\ln(x)}}{\frac{d}{dx}(x)}\\
\\
&= \lim_{x \to \infty} \frac{\frac{\left(\frac{1}{x}\right)}{\ln x}}{1}\\
\\
&= \lim_{x \to \infty} \frac{1}{x \ln x}\\
\\
&= \frac{1}{\infty (\ln (\infty))}\\
\\
&= \frac{1}{\infty}\\
\\
&= 0
\end{aligned}
\end{equation}
$

No comments:

Post a Comment