Suppose the common ratio in a geometric sequence is $\displaystyle \frac{3}{2}$ and the fifth term is $1$. Find the first three terms.
Since this sequence is geometric, its $n$th term is given by the formula $a_n = ar^{n-1}$. Thus,
$\displaystyle a_5 = ar^{1-1} = a \left( \frac{3}{2} \right)^{5-1} = a \left( \frac{3}{2} \right)^4$
$\displaystyle 1 = a \left( \frac{3}{2} \right)^4$
Solve for the first term $a$
$
\left\{
\begin{equation}
\begin{aligned}
1 =& a \left( \frac{81}{16} \right)
\\
\frac{16}{81} =& a
\qquad \text{Multiply both sides by } \frac{16}{81}
\end{aligned}
\end{equation}
\right.
$
For the second term,
$
\begin{equation}
\begin{aligned}
a_2 =& \frac{16}{81} \left( \frac{3}{2} \right)^{2-1}
\\
\\
=& \frac{8}{27}
\end{aligned}
\end{equation}
$
For the third term,
$
\begin{equation}
\begin{aligned}
a_3 =& \frac{16}{81} \left( \frac{3}{2} \right)^{3-1}
\\
\\
=& \frac{16}{81} \left( \frac{9}{4} \right)
\\
\\
=& \frac{4}{9}
\end{aligned}
\end{equation}
$
So the first three terms of the geometric sequence,
$\displaystyle \frac{16}{81}, \frac{8}{27}, \frac{4}{9}$
No comments:
Post a Comment