Determine the equation of the ellipse whose graph is given below.
    
    
  The form $\displaystyle \frac{x^2}{b^2} + \frac{y^2}{a^2}  = 1 $ is an ellipse with vertical major axis and whose vertices are
    $(0,\pm a)$. Notice from the graph that $b = 2$ and the ellipse pass through points $(-1,2)$ which means that the point is a solution on the ellipse. 
    So, by substitution
 	
	$
	\begin{equation}
	\begin{aligned}
		\frac{(-1)^2}{2^2} + \frac{2^2}{a^2} &= 1 \\
        \\
        \frac{1}{4} + \frac{4}{a^2} &= 1 && \text{Subtract } \frac{1}{4}\\
        \\
        \frac{4}{a^2} &= \frac{3}{4} && \text{Apply cross multiplication}\\
        \\
        3a^2 &= 16 && \text{Solve for } a\\
        \\
        a &= \frac{4}{\sqrt{3}}
	\end{aligned}
	\end{equation}
	$
	  
    
    Thus, the equation is
  	
	$
	\begin{equation}
	\begin{aligned}
		\frac{x^2}{2^2} + \frac{y^2}{\left( \frac{4}{\sqrt{3}} \right)^2} &= 1\\
        \\
        \text{Or} \\
        \\
        \frac{x^2}{4} + \frac{y^2}{\frac{16}{3}} &= 1 \\
        \\
        \frac{x^2}{4} + \frac{3y^2}{16} &= 1
	\end{aligned}
	\end{equation}
	$
No comments:
Post a Comment