Determine the integral ∫(tan2x+tan4x)dx
∫(tan2x+tan4x)dx=∫tan2x(1+tan2x)dxApply Trigonometric Identity sec2x=tan2x+1∫(tan2x+tan4x)dx=∫tan2xsec2xdx
Let u=tanx, then du=sec2xdx. Thus,
∫tan2xsec2xdx=∫u2du∫tan2xsec2xdx=u2+12+1+c∫tan2xsec2xdx=u33+c∫tan2xsec2xdx=(tanx)33+c∫tan2xsec2xdx=tan3x3+c
No comments:
Post a Comment