Monday, April 15, 2019

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 24

Determine the integral (tan2x+tan4x)dx



(tan2x+tan4x)dx=tan2x(1+tan2x)dxApply Trigonometric Identity sec2x=tan2x+1(tan2x+tan4x)dx=tan2xsec2xdx


Let u=tanx, then du=sec2xdx. Thus,


tan2xsec2xdx=u2dutan2xsec2xdx=u2+12+1+ctan2xsec2xdx=u33+ctan2xsec2xdx=(tanx)33+ctan2xsec2xdx=tan3x3+c

No comments:

Post a Comment