Determine the equations of the tangent lines to the curve y=lnxx at the points (1,0) and (e,1e). Illustrate by graphing the curve and its tangent lines.
Solving for slope at (1,0)
y′=ddx(lnxx)y′=xddx(lnx)−(lnx)ddx(x)x2y′=\cancelx(1\cancelx)−lnx(1)x2y′=1−lnxx2y′=1−ln1(1)2y′=1−01y′=1
Solving for slope at (e,1e)
y′=1−lnxx2y′=1−lne(e)2y′=1−1e2y′=0e2y′=0
Using point slope form
y−y1=m(x−x1)y−1e=0(x−e)y−1e=0y=1e
No comments:
Post a Comment