Tuesday, April 23, 2019

Single Variable Calculus, Chapter 3, Review Exercises, Section Review Exercises, Problem 42

Suppose that g(θ)=θsinθ, find g(π6)


g(θ)=ddθ(θsinθ)g(θ)=(θ)ddθ(sinθ)+(sinθ)ddθ(θ)g(θ)=(θ)(cosθ)+(sinθ)(1)g(θ)=θcosθ+sinθg(θ)=ddθ(θcosθ)+ddθ(sinθ)g(θ)=[(θ)ddθ(cosθ)+(cosθ)ddθ(θ)]+cosθg(θ)=(θ)(sinθ)+(cosθ)(1)+cosθg(θ)=θsinθ+cosθ+cosθg(θ)=θsinθ+2cosθg(π6)=2cosθθsinθg(π6)=2cosπ6(π6)(sinπ6)g(π6)=(\cancel2)(3\cancel2)(π6)(12)g(π6)=3π12org(π6)=1.47025142

No comments:

Post a Comment