Suppose that g(θ)=θsinθ, find g″(π6)
g′(θ)=ddθ(θsinθ)g′(θ)=(θ)ddθ(sinθ)+(sinθ)ddθ(θ)g′(θ)=(θ)(cosθ)+(sinθ)(1)g′(θ)=θcosθ+sinθg″(θ)=ddθ(θcosθ)+ddθ(sinθ)g″(θ)=[(θ)ddθ(cosθ)+(cosθ)ddθ(θ)]+cosθg″(θ)=(θ)(−sinθ)+(cosθ)(1)+cosθg″(θ)=−θsinθ+cosθ+cosθg″(θ)=−θsinθ+2cosθg″(π6)=2cosθ−θsinθg″(π6)=2cosπ6−(π6)(sinπ6)g″(π6)=(\cancel2)(√3\cancel2)−(π6)(12)g″(π6)=√3−π12org″(π6)=1.47025142
No comments:
Post a Comment