Thursday, April 4, 2019

Single Variable Calculus, Chapter 3, 3.8, Section 3.8, Problem 25

At what rate is the water level rising when the water is 30cm deep?



We know that the volume $V=$ (area of the base)(length). Recall that the Area of trapezoid is $\displaystyle A = \frac{h}{2}(b_1+b_2)$.


$
\begin{equation}
\begin{aligned}
V &= \frac{h}{2} (b_1 + b_2) (10)\\
\\
V &= 5h (b_1 + b_2) && \text{We will take the measurement in meters to be consistent with the units}
\end{aligned}
\end{equation}
$

Notice that $b_1 = h + 0.3m$ so,

$
\begin{equation}
\begin{aligned}
V &= 5h(h + 0.3+0.3)\\
\\
V &= 5h (h + 0.6)\\
\\
V &= 6h^2 + 3h
\end{aligned}
\end{equation}
$


Taking the derivative with respect to time we have,

$
\begin{equation}
\begin{aligned}
\frac{dV}{dt} &= 5 \frac{d}{dh} (h^2) \frac{dh}{dt} + 3 \frac{d}{dh} +\frac{dh}{dt}\\
\\
\frac{dV}{dt} &= 5 (2h) \frac{dh}{dt} + 3(1) \frac{dh}{dt}\\
\\
\frac{dV}{dt} &= 10 h \frac{dh}{dt} + 3 \frac{dh}{dt}\\
\\
\frac{dh}{dt} &= \frac{\frac{dV}{dt}}{10h + 3} && \text{;where } \frac{dV}{dt} = 0.2 \frac{m^3}{\text{min}} \text{ and } h = 0.3m\\
\\
\frac{dh}{dt} &= \frac{0.2}{10(0.3) + 3}\\
\\
\frac{dh}{dt} &= \frac{1}{30} \frac{m}{\text{min}} \text{ or } \frac{1}{30} \frac{\cancel{m}}{\text{min}} \left( \frac{100\text{cm}}{1m}\right) = \frac{10}{3} \frac{m}{\text{min}}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment