Solve the inequality $|4x + 1| \geq 21$, and graph the solution set.
The absolute value inequality is rewritten as
$4x + 1 \geq 21$ or $4x + 1 \leq - 21$,
because $4x + 1$ must represent a number that is more than $21$ units from  on either side of the number line. We can solve the compound inequality.
$
\begin{equation}
\begin{aligned}
|4x + 1| \geq & 21 && \qquad \text{or} &&& |4x + 1| \leq & -21
&&
\\
4x \geq & 20 && \qquad \text{or} &&& 4x \leq & -22
&& \text{Subtract } 1
\\
x \geq & 5 && \qquad \text{or} &&& x \leq & \frac{-11}{2}
&& \text{Divide by } 4
\end{aligned}
\end{equation}
$
The solution set is $\displaystyle \left( - \infty, \frac{-11}{2} \right] \bigcup [5, \infty)$.
No comments:
Post a Comment