Evaluate ∫t3e−t2dt by making a substitution first, then by using Integration by parts.
If we use z=−t2, t2=−z, then dz=−2tdt
so,
∫t3e−t2dt=∫t2⋅te−t2dt=∫−z⋅ez⋅(dz−z)=∫12zezdz=12∫zezdz
By using integration by parts, if we let u=z and dv=ezdz, then
du=dz and v=ez
12∫zezdz=uv−v∫du=12[zez−∫ezdz]=12[zez−ez]=ezz[z−1]
but, z=−t2
So, ezz[z−1]=e−t22[−t2−1]+c
No comments:
Post a Comment