Find the integrals ∫21y+5y2y3dy
∫y+5y2y3dy=∫(yy3+5y7y3)dy∫y+5y2y3dy=∫(1y2+5y4)dy∫y+5y2y3dy=∫y−2dy+5∫y4dy∫y+5y2y3dy=(y2+12+1)+5(y4+14+1)+C∫y+5y2y3dy=y−1−1+\cancel5(y5\cancel5)+C∫y+5y2y3dy=−y−1+y5+C∫y+5y2y3dy=−1y+y5+C∫21y+5y2y3dy=−12+(2)5+C−[−11+(1)5+C]∫21y+5y2y3dy=−12+32+C+1−1−C∫21y+5y2y3dy=−1+642∫21y+5y2y3dy=632
No comments:
Post a Comment