Find x3, the 3rd approximation to the root of x5+2=0 using Newton's Method with the specified initial approximation x1=−1. (Give your answer to four decimal places.)
Using Approximation Formula
xn+1=xn−f(xn)f′(xn)
f′(x)=ddx(x5)+ddx(2)f′(x)=5x4x2=x1−x51+25x41x2=−1−(−1)5+25(−1)4x2=−1−−1+25(−1)4x2=−1−−1+25x2=−1−15x2=−5−15x2=−65x3=x2−x52+25x42x3=−65−(−65)5+25(−65)4x3=−65−−77763125+25(1296625)x3=−65−−7776+625031251296125x3=−65−(−1526)(125)(3125)(1296)x3=−65+1907504050000x3=−65+76316200
x3≈−1.1529
No comments:
Post a Comment