Differentiate $\displaystyle y = \frac{u^6 - 2u^3 + 5}{u^2} $
$
\begin{equation}
\begin{aligned}
y' =& \frac{u^2 \displaystyle \frac{d}{du} (u^6 - 2u^3 + 5) - \left[ (u^6 - 2u^3 + 5) \frac{d}{du} (u^2) \right]}{(u^2)^2}
&& \text{Apply Quotient Rule}
\\
\\
y' =& \frac{(u^2)(6u^5 - 6u^2) - [(u^6 - 2u^3 + 5)(2u)]}{u^4}
&& \text{Expand the equation}
\\
\\
y' =& \frac{6u^7 - 6u^4 - 2u^7 + 4u^4 - 10u}{u^4}
&& \text{Combine like terms}
\\
\\
y' =& \frac{4u^7 - 2u^4 - 10u}{u^4}
&& \text{Factor the numerator and denominator}
\\
\\
y' =& \frac{\cancel{u} (4u^6 - 2u^3 - 10)}{(u^3)\cancel{(u)}}
&& \text{Cancel out like terms}
\\
\\
y' =& \frac{4u^6 - 2u^3 - 10}{u^3}
&&
\end{aligned}
\end{equation}
$
No comments:
Post a Comment