Find $y''$: For $\displaystyle y = x^{-3} + 2x^{\frac{1}{3}}$, find $f^{(5)} (x)$
$
\begin{equation}
\begin{aligned}
f'(x) &= \frac{d}{dx} \left[ x^{-3} + 2x^{\frac{1}{3}} \right] = -3x^{-3-1} + 2 \cdot \frac{1}{3} x^{\frac{1}{3}-1}
= -3x^{-4} + \frac{2}{3} x^{-\frac{2}{3}}\\
\\
f''(x) &= \frac{d}{dx} \left[ -3x^{-4} + \frac{2}{3} x^{-\frac{2}{3}} \right] = -3(-4)^{-4-1} + \frac{2}{3} \left( -\frac{2}{3}\right) x^{-\frac{2}{3}-1}
= 12x^{-5} - \frac{4}{9}x^{-\frac{5}{3}}\\
\\
f'''(x) &= \frac{d}{dx} \left[ 12x^{-5} - \frac{4}{9}x^{-\frac{5}{3}} \right] = 12(-5)x^{-5-1} - \frac{4}{9} \left( - \frac{5}{3} \right)x^{-\frac{5}{3}-1}
= -60x^{-6} + \frac{20}{27} x^{-\frac{8}{3}} \\
\\
f^{(4)}(x) &= \frac{d}{dx} \left[ -60x^{-6} + \frac{20}{27} x^{-\frac{8}{3}} \right] = -60 (-6)x^{-6-1} + \frac{20}{27}\left( - \frac{8}{3} \right)x^{-\frac{8}{3}-1}
= 360x^{-7} - \frac{160}{81} x^{-\frac{11}{3}}\\
\\
f^{(5)}(x) &= \frac{d}{dx} \left[ 360x^{-7} - \frac{160}{81} x^{-\frac{11}{3}} \right] = 360 (-7)x^{-7-1} + \frac{160}{81}\left( - \frac{11}{3} \right)x^{-\frac{11}{3}-1}
= 2520x^{-8} - \frac{1760}{243} x^{-\frac{14}{3}}
\end{aligned}
\end{equation}
$
No comments:
Post a Comment