Find the first and second derivatives of H(t)=tan3t
Solving for the first derivative of the given function
H′(t)=ddt(tan3t)H′(t)=sec23t⋅ddt(3t)H′(t)=(sec23t)(3)(1)H′(t)=3sec23t
Solving for the second derivative of the given function
H″(t)=ddt(3sec2t)H″(t)=3⋅ddt(3sec3t)2H″(t)=(3)(2)(sec3t)⋅ddt(sec3t)H″(t)=6sec3t⋅sec3ttan3t⋅ddt(3t)H″(t)=6sec3t⋅sec3ttan3t⋅3H″(t)=18sec2(3t)tan(3t)
No comments:
Post a Comment