Wednesday, February 27, 2019

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 49

Find the first and second derivatives of H(t)=tan3t
Solving for the first derivative of the given function


H(t)=ddt(tan3t)H(t)=sec23tddt(3t)H(t)=(sec23t)(3)(1)H(t)=3sec23t



Solving for the second derivative of the given function


H(t)=ddt(3sec2t)H(t)=3ddt(3sec3t)2H(t)=(3)(2)(sec3t)ddt(sec3t)H(t)=6sec3tsec3ttan3tddt(3t)H(t)=6sec3tsec3ttan3t3H(t)=18sec2(3t)tan(3t)

No comments:

Post a Comment