Determine the integral $\displaystyle \int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot^3 x dx$
$
\begin{equation}
\begin{aligned}
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot^3 x dx =& \int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x \cot^2 x dx
\qquad \text{Apply Trigonometric Identities } \csc^2 x = 1 + \cot^2 x
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot^3 x dx =& \int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x (\csc^2 x - 1) dx
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot^3 x dx =& \int^{\frac{\pi}{2}}_{\frac{\pi}{4}} (\cot x \csc^2 x - \cot x) dx
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot^3 x dx =& \int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x \csc^2 x dx - \int^{\frac{\pi}{2}}_{\frac{\pi}{4}}\cot x dx
\end{aligned}
\end{equation}
$
We integrate the equation term by term
@ 1st term
$\displaystyle \int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x \csc^2 x dx$
Let $u = \cot x$, then $du = - \csc^2 x dx$, so $\csc^2 x dx = -du$. When $\displaystyle x = \frac{\pi}{4}, u = 1$ and when $\displaystyle x = \frac{\pi}{2}, u = 0$. Therefore,
$
\begin{equation}
\begin{aligned}
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x \csc^2 x dx =& \int^0_1 u \cdot -du
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x \csc^2 x dx =& - \int^0_1 u du
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x \csc^2 x dx =& - \left[ \frac{u^{1 + 1}}{1 + 1} \right]^0_1
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x \csc^2 x dx =& - \left[ \frac{u^2}{2} \right]^0_1
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x \csc^2 x dx =& \frac{-(0)^2}{2} + \frac{(1)^2}{2}
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x \csc^2 x dx =& \frac{1}{2}
\end{aligned}
\end{equation}
$
@ 2nd term
$
\begin{equation}
\begin{aligned}
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x dx =& \left[ \ln (\sin x) \right]^{\frac{\pi}{2}}_{\frac{\pi}{4}}
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x dx =& \ln \left( \sin \frac{\pi}{2} \right) - \ln \left( \sin \frac{\pi}{4} \right)
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x dx =& \ln (1) = \ln \left( \frac{\sqrt{2}}{2} \right)
\\
\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x dx =& - \ln \left( \frac{\sqrt{2}}{2} \right)
\end{aligned}
\end{equation}
$
Combine the results of the integration term by term
$
\begin{equation}
\begin{aligned}
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x^3 dx =& \frac{1}{2} - \left( - \ln \left( \frac{\sqrt{2}}{2} \right) \right)
\\\\
\int^{\frac{\pi}{2}}_{\frac{\pi}{4}} \cot x^3 dx =& \frac{1}{2} + \ln \left( \frac{\sqrt{2}}{2} \right)
\end{aligned}
\end{equation}
$
No comments:
Post a Comment