Combine the expression $\displaystyle \log_5 (x^2 - 1) - \log_5 (x - 1)$, using the Laws of Logarithm
$
\begin{equation}
\begin{aligned}
\log_5 (x^2 - 1) - \log_5 (x - 1) =& \log_5 \left( \frac{x^2 - 1}{x - 1} \right)
&& \text{Law of Logarithm } \log_a \left( \frac{A}{B} \right) = \log_a A - \log_a B
\\
\\
\log_5 (x^2 - 1) - \log_5 (x - 1) =& \log_5 \left[ \frac{(x - 1)(x + 1)}{(x - 1)} \right]
&& \text{Factor } x^2 - 1
\\
\\
\log_5 (x^2 - 1) - \log_5 (x - 1) =& \log_5 (x + 1)
&& \text{Cancel out like terms}
\end{aligned}
\end{equation}
$
No comments:
Post a Comment