Suppose that
$ \qquad f(x) = \left\{
\begin{array}{ccc}
\sqrt{-x} & \text{ if } & x < 0 \\
3 - x & \text{ if } & 0 \leq x < 3 \\
(x - 3)^2 & \text{ if } & x > 3
\end{array}
\right.
$
a.) Find each limit. if it exists
$\qquad$ i.)$\lim \limits_{x \to 0^+} f(x)$
$\qquad \qquad$ Using Equation 2, $\lim \limits_{x \to 0^+} f(x) = \lim \limits_{x \to 0^+} (3 - x) = 3-0 = 3$
$\qquad$ ii.) $\lim \limits_{x \to 0^-} f(x)$
$\qquad \qquad$ Using Equation 1, $\lim \limits_{x \to 0^-} f(x) = \lim \limits_{x \to 0^-} \sqrt{-x} = \sqrt{0} = 0$
$\qquad$ iii.) $\lim \limits_{x \to 0} f(x)$
$\qquad \qquad$ Referring to the given conditions, $\lim \limits_{x \to 0} f(x)$ does not exist
$\qquad$ iv.) $\lim \limits_{x \to 3^-} f(x)$
$\qquad \qquad$ Using Equation 2, $\lim \limits_{x \to 3^-} f(x) = \lim \limits_{x \to 3^-} (3 -x) = 3 - 3 = 0$
$\qquad$ v.) $\lim \limits_{x \to 3^+} f(x)$
$\qquad \qquad$ Using Equation 3, $\lim \limits_{x \to 3^+} f(x) = \lim \limits_{x \to 3^+} (x - 3)^2 = (3 - 3)^2 = 0$
$\qquad$ vi.) $\lim \limits_{x \to 3} f(x)$
$\qquad \qquad$ Referring to the given conditions, $\lim \limits_{x \to 3} f(x) = 0$
b.) Find where $f$ is discontinuous.
$\qquad$ Referring to the given conditions $f$ is discontinuous at $x = 0$ because $\lim \limits_{x \to 0} f(x)$ does not exist and also $f$ is discontinuous at $x = 3$ because $f(3)$ is undefined.
$\qquad$ Therefore $f$ is discontinuous at 0 and 3.
c.) Graph the function $f$.
No comments:
Post a Comment