Suppose that
f(x)={√−x if x<03−x if 0≤x<3(x−3)2 if x>3
a.) Find each limit. if it exists
i.)limx→0+f(x)
Using Equation 2, limx→0+f(x)=limx→0+(3−x)=3−0=3
ii.) limx→0−f(x)
Using Equation 1, limx→0−f(x)=limx→0−√−x=√0=0
iii.) limx→0f(x)
Referring to the given conditions, limx→0f(x) does not exist
iv.) limx→3−f(x)
Using Equation 2, limx→3−f(x)=limx→3−(3−x)=3−3=0
v.) limx→3+f(x)
Using Equation 3, limx→3+f(x)=limx→3+(x−3)2=(3−3)2=0
vi.) limx→3f(x)
Referring to the given conditions, limx→3f(x)=0
b.) Find where f is discontinuous.
Referring to the given conditions f is discontinuous at x=0 because limx→0f(x) does not exist and also f is discontinuous at x=3 because f(3) is undefined.
Therefore f is discontinuous at 0 and 3.
c.) Graph the function f.
No comments:
Post a Comment