Find equations for the circle and the line in the figure below
Recall that the general equation of the circle with center $(h,k)$ and radius $r$ is...
$(x - h)^2 + ( y - k)^2 = r^2$
By observation, the circle has center at $(5,5)$ and has radius $5$, thus the equation of the circle is...
$
\begin{equation}
\begin{aligned}
(x-5)^2 + (y - 5) &= 5^2\\
\\
(x-5)^2 + (y-5)^2 &= 25
\end{aligned}
\end{equation}
$
Since the line passes through $(5,5)$ and $(8,1)$, by using two point form, we will be able to determine the equation of the line. So,
$
\begin{equation}
\begin{aligned}
y - y_1 &= \left( \frac{y_2 - y_1}{x_2 - x_1} \right) (x - x_1)\\
\\
y -5 &= \left( \frac{1-5}{8-5} \right) (x - 5)\\
\\
y -5 &= \left( \frac{-4}{3} \right) (x - 5)\\
\\
y -5 &= -\frac{4}{3} x + \frac{20}{3}\\
\\
y &= -\frac{4}{3} x + \frac{20}{3}+5\\
\\
y &= -\frac{4}{3} x + \frac{35}{3}
\end{aligned}
\end{equation}
$
No comments:
Post a Comment