Determine the integral $\displaystyle \int \csc^4 x \cot^6 x dx$
$
\begin{equation}
\begin{aligned}
\int \csc^4 x \cot^6 x dx =& \int \csc^2 x \csc^2 x \cot^6 x dx
\qquad \text{Apply Trigonometric Identities } \csc^2 x = 1 + \cot^2 x
\\
\\
\int \csc^4 x \cot^6 x dx =& \int \csc^2 x (1 + \cot^2 x) \cot^6 x dx
\\
\\
\int \csc^4 x \cot^6 x dx =& \int \csc^2 x (\cot^6 x + \cot^8 x) dx
\end{aligned}
\end{equation}
$
Let $u = \cot x$, then $du = - \csc^2 x dx$, so $\csc^2 x dx = -du$. Therefore,
$
\begin{equation}
\begin{aligned}
\int \csc^2 x (\cot^6 x + \cot^8 x) dx =& \int (u^6 + u^8) \cdot -du
\\
\\
\int \csc^2 x (\cot^6 x + \cot^8 x) dx =& - \int (u^6 + u^8) du
\\
\\
\int \csc^2 x (\cot^6 x + \cot^8 x) dx =& - \left( \frac{u^{6 + 1}}{6 + 1} + \frac{u^{8 + 1}}{8 + 1} \right) + c
\\
\\
\int \csc^2 x (\cot^6 x + \cot^8 x) dx =& \frac{-u^7}{7} - \frac{u^9}{9} + c
\\
\\
\int \csc^2 x (\cot^6 x + \cot^8 x) dx =& \frac{- (\cot x)^7}{7} - \frac{(\cot x)^9}{9} + c
\\
\\
\int \csc^2 x (\cot^6 x + \cot^8 x) dx =& - \frac{\cot^7x}{7} - \frac{\cot^9 x}{9} + c
\end{aligned}
\end{equation}
$
No comments:
Post a Comment