Monday, November 19, 2018

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 40

Determine the integral csc4xcot6xdx


csc4xcot6xdx=csc2xcsc2xcot6xdxApply Trigonometric Identities csc2x=1+cot2xcsc4xcot6xdx=csc2x(1+cot2x)cot6xdxcsc4xcot6xdx=csc2x(cot6x+cot8x)dx


Let u=cotx, then du=csc2xdx, so csc2xdx=du. Therefore,


csc2x(cot6x+cot8x)dx=(u6+u8)ducsc2x(cot6x+cot8x)dx=(u6+u8)ducsc2x(cot6x+cot8x)dx=(u6+16+1+u8+18+1)+ccsc2x(cot6x+cot8x)dx=u77u99+ccsc2x(cot6x+cot8x)dx=(cotx)77(cotx)99+ccsc2x(cot6x+cot8x)dx=cot7x7cot9x9+c

No comments:

Post a Comment