Wednesday, November 28, 2018

Single Variable Calculus, Chapter 7, 7.6, Section 7.6, Problem 38

If tan1(xy)=1+x2y. Find y
If we take the derivative implicity, we have...


ddx(xy)1+(xy)2=0+[x2ddy(y)dydx+2xy]xdydx+y(1)1+(xy)2=x2dydx+2xyxdydx+y=[1+(xy)2](x2dydx+2xy)xdydx[1+(xy)2](x2dydx)=y(2x+2x3y21)dydx=y(2x+2x3y21)x(1x[1+(xy)2])dydx=y(2x+2x3y21)x(1xx3y2)

No comments:

Post a Comment