If tan−1(xy)=1+x2y. Find y′
If we take the derivative implicity, we have...
ddx(xy)1+(xy)2=0+[x2⋅ddy(y)dydx+2x⋅y]xdydx+y(1)1+(xy)2=x2dydx+2xyxdydx+y=[1+(xy)2](x2dydx+2xy)xdydx[1+(xy)2](x2dydx)=y(2x+2x3y2−1)dydx=y(2x+2x3y2−1)x(1−x[1+(xy)2])dydx=y(2x+2x3y2−1)x(1−x−x3y2)
No comments:
Post a Comment