Thursday, November 22, 2018

Single Variable Calculus, Chapter 5, 5.5, Section 5.5, Problem 46

Find the definite integral a0xa2x2dx

Let u=a2x2, then du=2xdx, so xdx=du2. When x=0,u=a2 and when x=a,u=0. Thus,



a0xa2x2dx=a0a2x2xdxa0xa2x2dx=a0udu2a0xa2x2dx=12a0u12dua0xa2x2dx=12[u12+112+1]a0a0xa2x2dx=12[u3232]a0a0xa2x2dx=[1\cancel2\cancel2u323]a0a0xa2x2dx=[u323]a0a0xa2x2dx=a323(0)323a0xa2x2dx=a323

No comments:

Post a Comment