Find the definite integral ∫a0x√a2−x2dx
Let u=a2−x2, then du=−2xdx, so xdx=−du2. When x=0,u=a2 and when x=a,u=0. Thus,
∫a0x√a2−x2dx=∫a0√a2−x2xdx∫a0x√a2−x2dx=∫a0√u−du2∫a0x√a2−x2dx=−12∫a0u12du∫a0x√a2−x2dx=−12[u12+112+1]a0∫a0x√a2−x2dx=−12[u3232]a0∫a0x√a2−x2dx=[−1\cancel2⋅\cancel2u323]a0∫a0x√a2−x2dx=[−u323]a0∫a0x√a2−x2dx=−a323−(−0)323∫a0x√a2−x2dx=−a323
No comments:
Post a Comment