Show that the statement limx→2x2+x−6x−2=5 is correct using the ε, δ definition of limit.
Based from the defintion,
xif 0<|x−a|<δ then |f(x)−L|<εxif 0<|x−2|<δ then |x2+x−6x−2−5|<ε
But, x|x2+x−6x−2−5|=|x2+x−6−5(x−2)x−2|=|x2+x−6−5x+10x−2|=|x2−4x+4x−2|=|\cancel(x−2)(x−2)\cancelx−2|=|x−2|
So, we wantx if 0<|x−2|<δ then |x−2|<ε
The statement suggests that we should choose δ=ε
By proving that the assumed value of δ will fit the definition...
if 0<|x−2|<δ then, |x2+x−6x−2−5|=|x2+x−6−5(x−2)x−2|=|x2+x−6−5x+10x−2|=|x2−4x+4x−2|=|\cancel(x−2)(x−2)\cancelx−2|=|x−2|<δ=ε
Thus, xif 0<|x−3|<δ then |x2+x−6x−2−5|<εTherefore, by the definition of a limitxlimx→2x2+x−6x−2=5
No comments:
Post a Comment