Monday, November 12, 2018

Single Variable Calculus, Chapter 2, 2.4, Section 2.4, Problem 21

Show that the statement limx2x2+x6x2=5 is correct using the ε, δ definition of limit.

Based from the defintion,


xif 0<|xa|<δ then |f(x)L|<εxif 0<|x2|<δ then |x2+x6x25|<ε



But, x|x2+x6x25|=|x2+x65(x2)x2|=|x2+x65x+10x2|=|x24x+4x2|=|\cancel(x2)(x2)\cancelx2|=|x2|



So, we wantx if 0<|x2|<δ then |x2|<ε


The statement suggests that we should choose δ=ε

By proving that the assumed value of δ will fit the definition...



if 0<|x2|<δ then, |x2+x6x25|=|x2+x65(x2)x2|=|x2+x65x+10x2|=|x24x+4x2|=|\cancel(x2)(x2)\cancelx2|=|x2|<δ=ε



Thus, xif 0<|x3|<δ then |x2+x6x25|<εTherefore, by the definition of a limitxlimx2x2+x6x2=5

No comments:

Post a Comment